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A B S T R A C T  

We prove an Ulm-type classification theorem for actions in L(R), thereby 
answering a question of Becker and Kechris, and investigate the effective 
cardinalities which can be induced by various classes of Polish groups. 

0. Introduct ion  

This paper lies at the abstract end of a project to find a structure theory for 

some very general objects. It considers the effect ive card ina l i t i es  that arise 

from the continuous actions of Polish groups. The philosophy is to calculate 

cardinalities using only sets and functions that are in some sense r ea sonab l e  

or def inable .  As in [19] and [5], the notion of effective cardinalities is intended 

to measure the relative difficulty of classification problems, in that we may say 

that the classification of the equivalence relation E on X is harder than the 

classification of F on Y if the effective cardinality of X / E  exceeds that of Y / F .  

Of course the notion of reasonable is vague and subject to personal taste and 

prejudice. I will choose the most generous explication in wide currency. For me, 

the reasonably definable sets are those that appear in L(R), the universe of all 

objects that  arise from transfinite operations applied to ll~. 
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This may very well be too liberal for some, and an alternative approach would 

be to restrict ourselves to say the Borel sets, thereby giving us the notion of Bore l  

ca rd ina l i ty ;  alternatively we may diet on the sets and functions arising in the 

a-algebra generated by the open sets and closed under continuous images. For 

most of the problems considered below there is little difference between Borel and 

L(II 0 . Indeed, under the assumption of AD L(R) , the universe of L(]R) continues 

the sketch presented by the Borel sets, providing a canonical model of ZF where 

every set of reals has regularity properties such as being Lebesgue measurable and 

the cardinal structure plays out the suggestions made by the Borel equivalence 

relations. 

It should be stressed that  L(R) is a model of ZF, but not of choice. Thus not 

every set can be wellordered, and consequently not every cardinal corresponds 

to an ordinal. For instance, the cardinality of 2 ~~ is not an ordinal in L(•)-- 

just as there is no Borel wellordering of ]R in ZFC. Moreover, the existence of a 

surjection ~r: A -~ B does not guarantee that [B[, the cardinality of B, is less 

than the cardinality of A, in the sense of there being an injection from B to A. 

For instance, although there is a surjection from R to Q/JR in L(R), there is no 

injection in L(R) from Q/IR to JR. To keep the distinctions in view, I will always 

write IA[L(R) to indicate the cardinality of A as calculated in L(R). 

The first result is one in a long line of generalizations of the Glimm-Effros 

dichotomy for Polish group actions. 

0.1 THEOREM (ADL(•)): Let G be a Polish group acting continuously on a 

Polish space X ,  and let A C X be in L(IR). Then either 

(I) IA/GIL(~)<<_ L2<~I/(R), 
or  

(II) ]R/Q]L(~) _~ ]A/G]L(R). 

Here A / G  is the set of all orbits intersecting A - {G. a : a E A}. 

The proof of 0.1 also works in the ADa context, thereby answering a question 

from [3]. 

Another direction was suggested by recent work of Howard Becker's: 

0.2 THEOREM (Becker): Let G be a Polish group with a left invariant complete 

metric acting continuously on a Polish space X .  Then either 

(I) there is a Bore/8: X --~ 2 ~ such that for all x l ,  x2 E X 

3g E G ( g . x l  : x2) r O(Xl) -- O(x2), 

o r  
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(II) there is a Borel O: R -~ X such that for all rl,  r2 E R 

r~ - r :  �9 Q ~ 3g �9 c ( g .  0 (~ )  = o (~ ) ) .  

The class of Polish groups with a left invariant complete metric includes all 

locally compact and all solvable Polish groups, but not the symmetric group of 

permutations on a countably infinite set with the topology of pointwise conver- 

gence nor the automorphism group of [0, 1] under the compact-open topology. 

While Becker also established a weakening of this result for ~ sets (that is, 

those arising as the continuous images of Borel sets), he did so only under the 

additional assumption that every  real  has a sharp.  Below we obtain just in 

ZFC that  

0.3 THEOREM: Let G be a Polish group with a left invariant complete metric 

acting continuously on a Polish space X ,  and let A C X be ~ .  Then either 

(I) there is a A~ function O: A --+ 2 ~ such that for all x l ,  x2 �9 A 

3g �9 C ( g  . x l  = x2)  ~ O(z l )  = O(x2), 

or 

(II) there is Borel O: R -+ A such that for all r l , r2 E ]~ 

r 1 -- 7"2 e Q r 3g C G(g" O ( r l )  ---~ 0(1"2) ) . 

The method of 0.3 gives in ZFC alone that any Polish group G with a left 

invariant complete metric satisfies Vaught's conjecture on ~ sets--in that if X 

is a Polish G-space and A C X is analytic, then either A has a perfect subset 

of EcX-inequivalent reals or else IA/GI <_ lqo. The proof also yields under appro- 
priate determinacy or large cardinal assumptions a generalization that Becket's 

arguments do not seem to give under any hypothesis. 

0.4 THEOREM (ADL(R)): Let G be a Polish group with a left invariant complete 

metric acting continuously on a Polish space X ,  and let A C X be in L(•). Then 

either 

(I) IA/GIL(~) < L2~I/(R), 
o r  

(II) [R/Q[/(R) ~ [A/G[L(R). 

It should be noted here that  this may be viewed as a generalization of 0.3, 

since (I) is equivalent to the existence of some 0 E L(R), 

O: X - ~  R 
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such that for all xl ,x2  E A 

?g c v ( g  . = x2) r  O(xl)  = O(x2), 

while (II) is analogous to (and actually by 3.2, 2.7 equivalent with) the existence 

of 0 C L(gi), 

O: gi-+ X 

such that  for all rl ,  r2 C R 

rl -- r2 C Q ~:~ 3g E G(g" 0 ( r l )  = 0@2)). 

By the same method one obtains that the orbit structure of a complete left 

invariant metrizable group never reduces the equality relation on countable sets 

of reals. 

0.5 THEOREM: Let G be a Polish group with a left invariant complete metric 

acting continuously on a Polish space X.  Then there is no Bore1 O: gi N ~ X such 

that for all x, y 6 gin 

{x(n): n e N} = {y(n): n E N} r 3g e G(g.  x = y). 

In the AD L(~) context this yields that 17~o (N)]L(R) ~ IX/GIL(R) - t h e  effective 

cardinality of the set of all countable sets of reals is not below that  of the set of 

G-orbits. 

Finally, since Becker's result implies Vaught's conjecture for Polish groups 

admitting a left invariant complete metric, he was led to ask whether these are 

the on ly  Polish groups satisfying Vaught's conjecture. In answer: 

0.6 THEOREM: There is a Polish group G with no compatible left invariant 

metric such that whenever it acts continuously on a Polish space X ,  either 

(t) IX/e l  < ~0, 
or  

(II) 2 a~ _< Ix/GI.  

The group arises as Aut(M), for M a countable model constructed by Julia 

Knight. 

It might be felt that  the most important results in this paper are for El .  

Without contesting this I will comment that other kinds of sets do arise naturally 

in mathematical practice, and a variety of examples are presented in [20]. For 

instance, the collection of (codes for) continuous functions on Polish space is HI, 

and hence in L(N), but not ~I- The class of differentiable functions in C([0, 1]) 
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(continuous real valued functions on the unit interval) is ~I  non-El, while the 

class of functions in C([0, 1]) satisfying the mean value theorem is strictly more 

complicated than E l whilst being easily calculable in L(N). Likewise, in the 

Borel structure generated by first order logic, the set of rigid linear orders of N 

is again in L(R) without being E I. 

However, from the perspective of this work the dividing line between say E l 

and non-analytic but in L(R) is a secondary issue. The real point is that L(R) 

provides an extreme perspective, containing virtually everything we might allow 

as reasonably definable; closed under basic set theoretical operations it is rich 

enough to perform most mathematical activity, and by satisfying DC, the axiom 

of dependent choice, it remembers sufficient choice for us to reconstruct essentially 

all classical analysis. 

The different sections can be read independently, with only the proofs of w re- 

quiring a knowledge of determinacy. The background material is spread through 

w w and w with w and w requiring w and w w assuming w and w 

1. On Pol i sh  groups  

This section collects together some background on Polish group actions. Further 

discussion, along with a few of the proofs and most of the references, can be 

found in [3], [20] or [21]. 

1.1 Definition: A topological group is said to be Pol ish  if it is Polish as a topo- 

logical space---which is to say that it is separable and allows a complete metric. 

If G is a Polish group and X is a Polish space on which it acts continuously, then 

X is said to be a Pol i sh  G-space. E~  is the orbit equivalence on X, given by 

xlE~x2 r 3g C G(g. xl = x2). 

The orbit G.  x of a point x in X is denoted by [x]c. X/G denotes the collection 

of orbits, {[x]G: x �9 X}. 

1.2 Example: Let S~  be the group of all permutations of the natural numbers, 

and let 2 N• be the space of all functions from N • N to {0, 1}. Equip 2 N• with 

the product topology and So~ with the topology of pointwise convergence, under 

which we have that  S~ is a Polish group and 2 NXN is a Polish Soo-space in the 

action defined by 

(g. x)(n,m) = x(g- l (n) ,g- l (m))  

for any x �9 2 NxN and g �9 S~.  
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There is a natural sense in which we may view elements of 2 Nx~ as coding 

countable structures whose underlying set is N and whose only relation is a 

single binary relation, the extension of which equals {(re, n): x ( m , n )  = 1}. If 

for x E 2 N• we let M x  be the corresponding model, then we obtain that  for all 

xl ,  x2 in the space 

Mx,  "~ M~2 ~ 3g c S~(g - z l  = x2) .  

This can be extended in a simple minded fashion to allow elements of 2 (n-e*w') 

to code models of an arbitrary countable language, and to let So~ act so that  it 

again induces isomorphism as its orbit equivalence relation. II 

In analyzing S ~  it is often possible to use model theoretic ideas, such as types; 

in the context of arbitrary Polish group actions we can hope instead to use the 

notion of V a u g h t  t r a n s f o r m s .  

1.3 Definition: Let G be a Polish group and X a Polish G-space. Then for 

B C X, U C G open, B AU is the set of x E X such that  for a non-meager set of 

g E U ,  

g . x E  B; 

B ~ is the set of x E X such that  for a comeager set of g E U, 

g . x C B .  

F o r x � 9  B C  X, U C G o p e n ,  

v*g �9 U(g . z �9 B) 

indicates that  for a relatively comeager set of g �9 U, g- x E B. Finally, 

3*g c U( g . x  �9 B) 

is used to indicate that  for a non-meager set of 9 �9 U, 9 �9 x �9 B. II 

It  is generally only advisable to consider the Vaught transform of B when 

it is sufficiently well behaved to guarantee that  the transforms have the Baire 

proper ty- - for  instance, if B is Borel, or in L(IR) under suitable hypotheses. In 

the case that,  say, (B,) is a sequence of Borel sets 

(UB,) "U : U{(B4"V: v c u,v # �9 .% 

and thus we obtain that  the Vaught transform of a Borel set is again Borel. 

For general equivalence relations, induced by a group action, or arising in some 

other manner,  there is a spectrum of ways in which they may be compared, of 

which I mention those that  will be most important  in the remainder of the paper. 
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1.4 Definition: For E and F equivalence relations on Polish spaces Xand Y, 

E _<B F,  E B o r e l  r e d u c e s  F indicates that there is a Borel function 0: X --+ Y 

such that  for all Xl,X2 E X 

XlEX2 ~' O(Xl)FO(x2); 

we write E <c F,  E < ~  F,  E <L(R) F,  E < a ~  F,  to indicate that  there is, 

respectively, a continuous, ~2,A1 L(R), or absolutely Al-measurable 0: X --+ Y 

such that for all xl,  x2 E X 

xlEx2 ~ O(Xl)FO(x2), 

where a set is said to be abso lu t e ly  A 1 if it is defined by two E 1 formulas 

that  continue to define exact complements through all generic extensions; the 

importance of absolutely A21 is that is provides the most general class of functions 

for which we maintain reasonable control in ZFC. Here we may assume without 

loss of generality that X and Y are in L(~), the smallest class inner model of ZF 

containing the reals. One writes E EB F, E Ec F and E -----L(R) F if there is a one- 

to-one 8 that performs the above described reduction, and is Borel, continuous 

or in L(R), respectively. These notions are graded, since all continuous functions 

A 1 and all these in turn  lie inside L(R) II are Borel, all Borel are ~2, 

In this paper I will only be interested in the reductions above. These suggest 

a notion of bi-reducibility among equivalence relations, defined to hold when 

E _<B F --<B E. 

We might also define a rival notion of equivalence to hold when there is a Borel 

bijection 8 between the underlying Borel spaces X and Y with 

Vx,,x2 e X ( x l E x 2  ~ O(Xl)FO(x2)), 

but it turns out that the definition at 1.4 above better  reflects the idea of 

e f fec t ive  ca rd ina l i ty .  

1.5 Definition: Eo is the equivalence relation of eventual agreement on infinite 

sequences of O's and l's, so that for x, y E 2 s 

xEoy r 3NVn > N(x(n)  = y(n)). 

It is known that under the ordering of Borel reducibility, E0 is equivalent to the 

more familiar Vitali equivalence relation given by 

xE,,y r (z - y) 6 Q, 
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in as much as Eo <_BEv <U E0. 

For the first inequality it suffices to consider (0, 1)/Q. For x C (0, 1) let O(x) = 

(rn(x))~eN denote the decimal expansion of x with respect to the varying basis 

(n)neN--so that 

and each rn(x)  C (0, 1, 2, ..., n -  1); in the case of there being more than one such 

expansion--which corresponds to a recurring 9 in an infinite decimal expansion-- 

we can convene to choose the expansion that terminates with rn(x)  : 0 for all 

sufficiently large n. Since the resulting expansion of any rational number has 

finite support, in the sense of simply being zero everywhere from some point on, 

we obtain that xl - x 2  E Q if and only if 0(xl) and 0(x2) eventually agree. From 

here we can organize a coding by elements in 2 ~, with similar properties and 

hence a reduction to E0. (I am very grateful to Itay Neeman for pointing out 

this short proof.) 

For the second inequality, let (q~)~e~ list the rationals, and choose a family 

(Vs)se2<~ of non-empty open sets such that 

s c t ~ V~ D Vt ,  

s(n) # t(n) ~ Vm <_ n(qm- V~ N Vt = 0), 

and for lh(s) = n and w c 2 <~~ we have 

qk(n) " Vso~ = Vsl~ 

for some subsequence (qk(n))nEw C (q~)ne~, where siw refers to the concatenation 

of s followed by i and then w. The function 0 with 

{0(x)} = . ,  

for x E 2 ~ provides the reduction. 

While from the point of view of ZFC cardinals, 2N/Eo (or R / E , )  both have 

cardinality 2 s0, and hence the same size as 2 N, or ]I(, from the point of view of 

e f fec t ive  card ina ls ,  these sets are very different. For instance, in L(R) there 

is no injection from 2•/Eo to 2 N. Similarly from the context of Borel structure, 

there is no Borel 0:2 N --+ 2 N such that for all x l , x 2  

XlEoX2C:~O(Xl) : O(x2). 

Here id(2 ~) is the equality relation on 2 ~, which, as the collection of sequences 

from {0, 1}, may be identified with 2 N. id(2 <~ )  is the equality relation on 
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countable transfinite sequences of O's and l's. Again, while 2 ~ and 2 <~1 have the 

same cardinality in ZFC, there is no r e a s o n a b l y  def inab le  injection from 2 <~' 

to 2~; under suitable large cardinal assumptions, we have, for instance, no such 

injection in L(R). 

1.6 Definition: HC denotes the collection of aI1 sets whose transitive closure 

is countable-in other words, if x E HC then every x0 E x is countable, every 

xl E x0 E x is countable, and so on. I 

It is known from the Scott analysis of [22] and the more recent results of [3] 

that if X is a Polish S~r then E x <aA~id(HC), in the sense of there being 
S o o  - -  ~ 2  

an absolutely ~ in t h e  codes  function; that is to say, there is an absolutely 

~ function from X to elements of 2 N• such that any two xl,  x2 C X are orbit 

equivalent if and only ~(xl) and O(x2) code the same element in HC. (Here we 

can say that x E 2 N• codes  a cHC if (TC(a) U (a) ,  C) TM A/[~, where A4~ is as 

in 1.2.) 

1.7 Definition: A Polish group G is said to be a cli g r o u p  if it has a compatible 

left invariant complete metr ic- - that  is to say there is a compatible complete 

metric d such that for all g, hi, h2 C G 

d(hl,h2) = d(ghl,gh2). 

It is known that all Polish groups have a compatible left invariant metric, but 

not all have a c o m p l e t e  left invariant metric. For instance, neither S~  nor the 

homeomorphism group of the unit interval are cli groups. On the other hand, all 

abelian and locally compact groups are cli groups (see Ill). A group has a left 

invariant complete metric if and only if it has a right invariant complete metric, 

since we can pass from one to the other by setting d*(g, h) = d(g -1, h - l ) .  

For left invariant metrics the notion convergence is topological: (gi)ieN will 

be Cauchy if and only if for each open neighbourhood U of the identity there is 

some N such that for all n, m > N,  g~lgm E U. Thus, in particular, if one left 

invariant metric is complete they all are. 

The following important fact appears in [26]: 

1.8 LEMMA: Let G be a Polish group and X a Polish G-space. Then for x E X 

we let the stabilizer of x, (g E G: g . x = x~, be denoted by G~. Then [x]c is 

uniformly Borel in x and any real coding G~. 

In particular, every equivalence class is Borel. 

Finally: 
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1.9 THEOREM (Effros): With X and G as in 1.8, x E X ,  [ZIG E Ho if  and only 

if  the map G --+ [x]c, g ~ g" x is open. 

For the purpose of indicating how 1.9 is currently being used we have 

1.10 LEMMA: Let G be a Polish group and X a Polish G-space with basis B, 

x E X .  Let da be a compatible metric on G. Suppose that [ZIG is G~. 

Then for all e > 0 we may find some U~ E I3 containing x such that for all 

x' e U~ n [z]a and U e S, 
[z]cnu, n u  r  

implies that there exists 9 6 G such that 

d a ( 1 , g ) < e  and 9 . x ' E U .  

Proos Let V C G be an open neighbourhood of the identity such that V -1 = V 

and V 2 c {g 6 G : da(1,9) < e}. Since 9 ~ 9.  x is an open map by 1.9 we may 

find U~ 6 B containing x such that V .  x D U~ M [x]a. I 

1.11 THEOREM (Hjorth-Kechris): Let X be a Polish space and E a E l  

equivalence relation on X with every equivalence class Borel. Then either 

(I) E0 Cc E, 

o r  

(II) E <~A~ id(2 <r176 (i.e. there is an a~-measurable  in the codes reduction). 

Proofi See [17]. I 

1.12 COROLLARY: Let A be a E] set and E a E] equivalence relation on A with 

every equivalence class Bore1. Then either 

(I) Eo E_c E,  

or 

(II) E <~A~ id(2<~l). 

Proob Fix a Polish space X so that  A is the image under of X under some 

continuous function 7r: X ~ A. Define F to be pullback of E under ~r--so that  

x l F x 2  if and only if ~r(xl)ETr(x2). If E0 E_c F then by composing with 7r we at 

once have E0 <_c E and so will be finished after observing: 

CLAIM: I f  Eo ~--c E then Eo Ec E. 

Proof  of Claim (this is a well-known and entirely general fact): Let 

f :  2" --+ X 
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witness E0 <c E and let P = f[2 ~] be the image of 2 ~ under f .  Since the 

preimage of any point is countable under f ,  we may find Borel g: P ~ 2 ~ such 

that  f o g(x) = x for any x E P. Thus ElF is Borel and non-reducible to id(2~), 

and so the conclusion follows by [11]. (Claim I) 

So instead suppose that  we are in case (II) of 1.11, and 0: X -+ 2 <~1 is 

an aA~-measurable in the codes witness to E <aA1 id(2<~1). By Jankov-von 

Neumann uniformization (see 18.A [20]) we may find a C-measurable, and hence 

a A~-measurable, function a: A --+ X so that  for all a E A 

o o ( x )  = x .  

Then O o a puts us in case (II) for E. 

2. In L(R) 

We will need much the same technology as employed in [12], but working with 

arbi trary Polish spaces. Here I will assume that  given a point x in some Polish 

space X the reader is willing to allow that  we can make sense of constructing 

from x and forming the smallest inner class model, L[x], containing x. Strictly 

speaking we need instead to fix a real z coding a presentation of X,  and express 

ourselves in terms of constructing from the pair (z, y(x)), where y(x) is an element 

of 2 ~ that  codes x relative to the presentation coded by z. 

Just  as an aside, let me briefly indicate how this might be completed rigorously. 

For X a Polish space we must first choose a complete compatible metric dz  and 

a countable dense subset {ai : i E N} C X. We then fix recursive bijections 

71-4: W 4 ~ 02, 71"3:02 3 ---+ 02 and define z E 2 ~ by the specification that  

if and only if 

z (~4(n ,m, i , j ) )  = 1 

n 
2-'- ~ < dx  (xi, x j). 

Clearly from z we may recover dz ( x i , x j )  by considering the cut obtained in 

the dyadic rationals. From the set {dx(x i ,x j ) :  i , j  E N} we can reconstruct 

the behavior of the complete metric space on a countable dense set, and thus 

determine it up to isometry. For any x E X we may define a code y(x) E 2 ~ by 

(y(x))(r3(n, m, i)) -- 1 

if and only if 
n 

2--- ~ < dx(x ,  xi). 
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Alternatively, the reader may interpret the results below as holding only for the 

recursive Polish spaces, in the sense of [25], but allowing the usual relativizations 

to a parameter.  Finally, we may use the fact that  all uncountable Polish spaces 

are Borel isomorphic to code any Polish space by elements of 2 N, again with the 

coding taking place relative to some parameter  z. 

The t ruth is that  any mathematicians working in this field will have their own 

methods of coding, and so instead of being precise and strict, I will be more 

informal and treat  the elements of any Polish space in exactly the same fashion 

as the r e c u r s i v e  Po l i sh  spaces ,  such as R and 2% Let us agree to only keep 

in the background that  this is not quite accurate but more concise and easily 

rectifiable. 

However the reader chooses to explicate the notion of constructing from a 

point in a Polish space or using a parameter  to code such a space, the notation 

x C X ~ M, for M an inner model, means that  x is a point coded by a real in 

M,  and that  the parameter  used to code X exists in M. We can think of U as 

being an open set coded in M if there are sequences (qi)ieN of rationals (xi)ie• 

of points in X, both in M, such that  U equals the set of elements x E X for 

which there is some i with x within distance qi of xi. 

Up to isomorphism, all Polish spaces exist in L(II~). Thus it will be convenient 

to have a standing assumption that all our Polish spaces are in fact elements of 

this inner model; the assumption can be made without loss of generality. 

The theory of L(II~) will be developed under the determinacy assumption 

AD L(•), which states that  every subset of w ~ in L(]R) is determined--one of 

the players has a winning strategy in the infinite game where I and II alternate 

in playing integers, and the victor is decided on the basis of whether the resulting 

element of w ~' is in the specified subset. While ZFC alone is too weak to decide 

many natural  questions regarding L(~), the assumption of AD L(m provides a 

canonical theory for this inner model. There is widespread acceptance of this 

assumption in the study of L(I~) among set theor is ts--par t ly  because it leads to 

a theory for the sets of reals in L(I~) which continues the pat tern we find for the 

Borel sets under ZFC, and partly because AD L(~) was shown in [30] to follow 

from large cardinal assumptions, such as the existence of a supercompact. 

2.1 Definition: If X is a Polish space, A C X is said to be ec-Borel if there is 

an ordinal a ,  a set S C a and a formula ~ such that  A equals 

e x: L [x,S] 
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2.2 THEOREM (Woodin): Assume AD L(x) and tet A C X be OD L(~) for some 

real x �9 ]R. Then there is an oo-Borel code for A in HOD L(e) . (See [27].) 

2.3 Definition: Let C be a transitive set in M, a class inner model. Then OD~ 

is the class of all sets E2 definable in the Levy hierarchy from parameters in the 

ordinals and {C} U C (as calculated from the point of view of M); HODg is the 

class of all sets in OD M whose transitive closure is again included in OD M. It 

is a standard fact that HODg is the smallest transitive inner model containing 

C, the ordinals, and closed under ordinal definability from the point of view of 

M. For X a Polish space whose presentation exists in M, we use I~(C, X, M) 

to denote {A �9 (P(X))M: A �9 ODg}; this can be viewed as a Boolean algebra 

in the natural sense. (Note that (7)(X)) M refers not to the true power set of 

X,  but the power set of X n M inside M.) For G C g(C, X ,  M) a sufficiently 

generic filter, we may define a point x(G) �9 X by the requirement that for all 

open U C X whose code exists in M we have that 

x E U cv (U A M)  E G. 

The statement of the next theorem is slightly more general than is usual; the 

proof however follows exactly as does the usual proof, given in [12]. The one 

variation is that here our inner model HOD~ need not satisfy choice. 

2.4 THEOREM (Vopenka): Fix M,  C and X as above, and assume that C 

includes a code for X .  Then there exists ]~ in HOD M, i : B ~ ~(C, X, M) 

in M,  such that: 

(i) for all x E X N M,  

G(x) ----dr ( i-I(A):  x c A , A  �9 OD M} 

is HODS-generic for ]~; 

(ii) there is a HODM-generic for B below every non-zero dement  in M;  

(iii) i f  H C ~ is HODM-generic, i f  we let G = i[H] then x(G) �9 HODM[H], and 

for ali ordinals a, ~ 6 C <', and formulas 99, 

L~(C,x(G))  ~ 99(~',x(G)) e* {x e X N M :  M ~ 99(~,x)} �9 G; 

(iv) i eODg. 
Note that  ~ from this theorem will have size at most ~ ( x ) M - - t h e  set of all 

subsets of X in M- -and  so will have cardinality at most (22~~ )M. 

The following important result may be found in [24]: 
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2.5 THEOREM (Martin-Moschovakis-Steel): Assume AD L(R). Then in L(N), 
Scale(  ). 

It follows from entirely general facts that every non-empty E~ collection of 

sets of reals in L(R) has a E 2 member, and thus there will be a member of this 

collection which is the projection of a t ree,  in the sense of [25]. 

2.6 Definition: For A C L(R), JAIL(a) denotes the cardinality of A as calculated 

in L(R). So IAIL(~) ~ IBIL(a) if there is an injection from A to B; by Schroeder- 

Bernstein, they have the same cardinality only if there is a bijection between 

them. For a an ordinal, H(a) denotes the collection of sets whose transitive 

closure has size less than a. Thus the class of all hereditarily wellorderable sets 

in L(It~) is the union UaeOrd(H(g)) L(~) . HC equals H(wl). | 

Here it is worth collecting together some facts about L(IR)-cardinals under the 

assumption of AD L(a). Note that  H(Wl) = H(Wl) L(R) . 

2.7 THEOREM (folklore): Assume AD L(~). Then 

(i) [•[L(R) <--12WlL(R) --< []~IL(R); 
(ii) IRIL(a) ~;~ ]~llL(R) ~ [RIL(a); 

(iii) Ill(In(a) < [R/QIL(R); 
(iv) [R/QIL(a ) ~ ](2~) L(a) [L(~) for any ordinal ~; 

(v) I~/Q]L(a) _< ]2~/EotL(~) _< }N/Q}L(a); 

(vi) I~,l~(a) < 12<~'tL(~) < IH(~I)IL(~r 
(vii) [2~I/(R) < 12<~'lL(a). 

Proofs: (i) This is clear even without any sort of determinacy assumptions, since 

there are Borel injections both ways. 

(ii) As can be found in [18], there is a countably complete ultrafilter on wl 
under AD, so there can be no Wl sequence of reals in L(N). 

(iii) IR[L(a) _< I]~/QIL(R) since we can find a map from I~ to R such that  any two 

distinct reals have images that  are mutually generic over L ~ .  To see the failure 

of reducibility in the other direction, note that  by the Lebesgue density theorem 

any Q-invariant Lebesgue measurable function from R must be constant almost 

everywhere; since all functions are Lebesgue measurable in L(N), this suffices. 

(iv) Let 0: R -+ 2 a be Q-invariant and in L(R). Then, as in the proof of (iii), for 

each ~ less than a, the set {x 6 R : 8(x) = 1} is either null or co-null. By Fubini's 

theorem in L(N) and all sets Lebesgue measurable, wellordered intersections of 

co-null sets are co-null, and so 0 must be constant almost everywhere. 

(v) This follows as in the remarks after 1.5, since we have Ev ~_u Eo.~_B Ev. 
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(vi) Any countable ordinal o can be coded by a fimction in 2 <~' that  has 

domain o and takes constant value 1. The other inequality follows since 2 <~'' C 

H(wl). The first strict inequality, [WllL(R) < 12<'~ follows by IRIL(r) < 

2 < ' '  and (ii); tile second strict inequality by IR/QIL(R) <_ Ig(~o~)[g(rl. 

(vii) The non-reduction follows since there is no Wl sequence of reals. II 

A number of results similar to (iii), (vi) and (vii) are presented in [5]. 

2.8 THEOREM (Woodin): Assume AD L(rl. If E E L(R) on R, then exactly one 

of the following holds: 

o r  

(II) for some ordinal ~, 

E <_Lira id(~). 

2.9 COROLLARY TO THE PROOF: Assume AD m(m. Then for any set A, exactly 

one of the following holds: 

(I) [R[L(r) <_ IAIL,(r). 
o r  

(II) for some ordinal to, 

2.10 THEOREM (Hjorth): Assume AD L(~). l f  E E L(R) on R, then exactly one 

of the following holds: 

(I) Eo ff_r E, 

o r  

(II) for some ordinal ~, 

E --<L(R} id(2~). 

(See [12].) 

2.11 COROLLARY TO THE PROOF: Assume AD L(R). Then for any set A, exactly 

one of the following holds: 

(I) IR/QILcR) < IAIL(R), 
o r  

(II) for some ordinal ~, 

IAIL(r )  <_ 12"lL(r). 

Theorem 2.10 follows by arguments similar to those used in proving 2.8. It is 

unknown whether there is an analogue of these results for the cardinality of HC 
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in L(R), but it is known that any such result would need to be considerably more 

complex--in particular, there is no single set B in L(R) so that 

[AlL(a) <_ IH(n)[L(R) 

for some ordinal ~ if and only if 

IBIL( ) IA[/(a) 

fails. 

As 2.12 LEMMA: Assume AD L(R). Let E and F be Borel--or even ..~1, or even 

projective---equivalence relations on Polish spaces X and Y .  Then E <--L(~) F if  

and o, y if IX/EI ( ) < JY/FIL( ). 

Proof: The only if  direction is immediate, so suppose that 

IX/ElL(B) _< IY/FIL(R). 

Then we can find a set R C X x Y in L(ll~) so that: 

(i) V(Xl, Yl), (x2, Y2) E R, x lEx2  if and only if ylFy~; 

(ii) Vx E X 3 y  e Y((x, y) �9 R). 

Thus by 2.5 we can find such a set R with R �9 E 2 and then a tree T on some r. j l~ 

ordinal with PIT] = R. Then by the absoluteness of illfoundedness for trees, we 

can find in each model LIT, x] some y �9 Y with 

(x, y) e ;[T]. 

Note here that  we can define from x and T a wellorder of L[T, x]. Thus we may 

define 0: X --+ Y by letting O(x) be the first y above in the canonical in (x, T) 

wellorder of LIT, x]. | 

Consequently it is natural to use the ordering <_L(~)--and by analogy _<B--in 

comparing Borel equivalence relations, since this is the notion of comparison that  

corresponds to cardinality in L(•). 

On the other hand: 

2.13 LEMMA (folklore): Let X E L(I~) be a non-empty set. 

lr E L(R) and ordinal a such that 

(i) ~r: ]R x a -~ X is onto; 

and thus 

Then there is a 
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(ii) there is a sequence (E~)~e~ of equivalence relations in L(~) and A C 

{([X]Ez,fl): fl < a , x  e R}, and a bijection a: A --+ X ,  A , a  e L(]R). 

And therefore the study of cardinalities in L(R) is largely the study of definable 

equivalence relations and their corresponding quotient spaces. 

The following result, stated in a rather narrow form, places the results from w 

in context. 

2.14 THEOREM (Becker-Kechris): Assume AD L(~). Let G be a Polish group 

acting continuously on a separable metric space A in L(]~). Then E~ ~---L(R) E~  

for some Polish G-space X .  (See [3].) 

Thus whenever A is a separable metric space in L(R) and a Polish group G 

acts on A, then there will be a Polish G-space X and B C X in L(]~) so that 

JA/GILI I = JB/GILI I. 

To this degree the study of effective cardinalities induced by Polish group actions 

may be subsumed in the development of Polish groups acting continuously on 

Polish spaces. 

Theorem 2.14 is given at 5.3.4 of [3]; the assumption of AD L(R) is only needed 

so that  all sets in a Polish space in L(]~) have the property of Baire. However, 

the more recent construction of a universal Polish G-space in [15] is sufficient to 

prove 2.14 in ZFC. 

3. Generalized Ulm-type dichotomies 

The next theorem is stated under entirely abstract hypotheses, assuming ZF, 

DC-- the  axiom of dependent choice--and some manner of exotic regularity prop- 

erty for the relevant sets of reals. Of course, the main interest is in the conse- 

quences for L(R), and the precise statement below is of technical interest. 

As for a word regarding the coding, we may speak of a suitable point x E 2 NxN 

as coding a transitive set N~ which arises from the Mostowski collapse, 

7rx: ~d ~ N x ,  

so that for each n, m E w we have 

x(n ,m)  = 1 ~ ~r~(n) e ~r~(m). 

Then I want to take the further step of using subsets of w to code generic filters 

over N~, so that if P is a partial order and (Pi)~e~ is some enumeration then we 
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may say that  y E 2 ~ codes a filter Gy on P (relative to the enumeration P0, pl, .--) 

if 

Gy ~-df {Pn: y(n) = 1} 

is a filter on P. Given a countable structure N satisfying some minimal amount 

of set theory, a partial order P C N and a filter G C P,  we can form the generic 

extension N[G] of N by closing under the terms in N. In the usual manner we 

can say that  a collection of filters A C 2 p is Borel in the codes or E~ in the codes 

if it is uniformly Borel or E~ in any enumeration of P. 

3.1 LEMMA: Let M be a countable transitive model, ~ E M a finite tuple, P E M 

a partial order and ~ a formula in set theory. Then 

{G e 2P: M[G] ~ ~(g, G)} 

is uniformly A~(w) for any parameter  w coding M,  the tuple ff and the partial 

order P.  

Proof: Recall the standard fact that  it is uniformly A~ (x) to calculate the theory 

of the model, M, ,  coded by x. Now the lemma follows since the collection of 

codes for M[Gy] is uniformly A~(w,y) for any w as above and y E 2 ~ coding a 

filter on P.  | 

3.2 THEOREM: Assume ZF, DC, all sets of reals are oo-Borel, and that there is 

no wl sequence of reals. Let H be a Polish group, X be a Polish H-space, and 

A c X an H-invariant subset. Then either: 

(I) EXHIA <_ id(2<~l), 

o r  

(II) Eo E c EX[A.  

Remark: Here the unadorned _< means that  there just outright exists a reduction 

8, with no special definability assumption. In the context of ZF+-~AC this notion 

has content. 

Proof: Let ~o, a ,  and S C c~ witness the definition of oc-Borel, so that  A is equal 

to the set of x C X such that  

x). 

Without loss of generality S codes X, H, and the action, in some appropriate 

sense. 
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[The idea of the proof is this: We would dearly like to use the Vopenka algebra 

relative to S to mimic the usual Glimm-Effros dichotomy theorems with a forcing 

proof over HODs. In general the combinatorics of this may fare poorly, since the 

forcing involved is extravagant and there is no hope of any kind of absoluteness; 

and even if the combinatorics succeed the potentially vast size of the collection 

of ODs subsets of X would seem to offer little hope to obtain countable objects 

as complete invariants. 

So instead we reflect down to (HODs) L[z,S] for various x E A. There arises 

a new difficulty since (HODs) L[~'S] may not be an invariant of the orbit [X]H. 
This further problem can be solved by 'averaging' out along the ideal on the orbit 

obtained by the ideal of meager sets in the group. So we consider (HODs) L[g'x,S] 
for 'generic' g E H; this does provide an invariant of the orbit. At this stage 

we focus on the small piece of A that can arise in forcing over (HODs) L[g'~,S] 
with the Vopenka algebra. If Eo ~_c EXIA fails, then on each of these small 

pieces we can uniformly assign bounded subsets of Wl as complete invariant. 

The various assignments might overlap, and so as our final invariant we take 

not just the bounded subset assigned to [X]H using (HODs) L[g~'S] but also a 

code of a large initial segment of (HODs)L[g'z,s]; this last code will be uniformly 

realizable as a bounded subset of wl by the existence of a uniform in S wellorder 

of (HODs) L[g'~:'S] .] 
Since there is no Wl-sequence of reals, wl is strongly inaccessible in L[S, x] for 

any x E X. Thus, in particular, almost every g E H is generic over L[S, x] for 

the forcing notion that uses the non-empty basic open sets of H ordered under 

inclusion as a forcing notion. This notion is equivalent to Cohen forcing and 

homogeneous; thus as in the standard development of forcing, presented by [18], 

the corresponding HOD of the generic extension is decided in the ground model, 

and 
V*g E HV*h E H(HOD L[S'~'~] = HoDL[S'h'~]). 

Let M~ denote this common model, so that 

V*g E H(M~ = HoDL[S'g'~]). 

Note then that  M~ depends only on [X]H. Define the ordinal 7(x) to be the first 

beth fixed point after w in the resulting model for a comeager set of g E H: 

I LES'  1 __ 

By strong inaccessibility of w v this ordinal will be countable. The key facts 

about M~ are that  it has a uniformly E2(S) wellorder and all the forcing below 

takes place inside the V-countable structure (Ve(x)) M~. 
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Then let B~ be the set of y E X such that for some h E H and p E ~ we 

have: 

(a) there is an M~-generic G C ~} with 

x(G) = h.y;  

(b) p forces that x(G) E A, in the sense that 

p IF La[S,x(G)] ~ qv(S,x(G)), 

where G is understood to be the name for the generic object on Ilia. 

Let p~ be maximal so that 

p~ IF n~[S,x(O)]] ~ qo(S,x(r 

this exists by completeness of the algebra B~. (In fact p~ is the image of 

A N L[S, g �9 x] under the canonical isomorphism of B~ and the algebra of OD 

subsets of X in L[S, g. x] for any sufficiently generic g E H.) 

CLAIM (1): B~ is uniformly G~(w) for any code w for the parameters H, X,  p~, 
M ~ -r(z), and 

Proof of Claim: Let Ax be the set of triples (y, g, G) so that 

G c ~  

is M~ generic below Px and 

x(C) -= 9 .y. 

By 3.1 this set is uniformly Borel in the indicated parameters. Since B~ = 

{y: 3g E H,G E 2~'s ( (y,g, G) E A~)} we have the claim for B~. (Claim (1) I) 

Note that  EXIB~ is uniformly E~ in any code for the parameters indicated 

above. If for some x we have Eo KK_c EXHIB~ then certainly E0 __Gc A, since 

B~ C A, and the proof is finished. So suppose instead that for every x E A this 

is not the case, and we apply 1.12 to obtain a reduction to 2 <~  . 

Fixing x E A let ~s = C~ Note that for any G' C l~ S that  is M~ 

generic we have that  there is a code for B~ as a E] set by Claim (1) above. 

CLAIM (2): ~'"sJlA/rx~P's ~ EXIB~ <~A1 id(2<~l). 

Proof of Claim: Instead, suppose q E I~ s forces otherwise. Then we may find 

G' C ~s in V that is M~ generic below q. By 1.12 we must have 

E0 Eo 
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in M~[G']. But now Eo U_c EXIB~ is certainly no worse than E~, hence upwards 

absolute between class models, and thus must hold also in V, with a contradiction 

to the case assumption. (Claim (2) | )  

Let 0} be the term for an a A2Lmeasurable function witnessing Claim (2) in 

(M~)P}. Note by Shoenfield that for any G' C W s that is M~-generic and any 

xl, x2 E Bx, if /~[G'](xl)  and O~[G'l(x2 ) are defined then 

�9 ~ E g ~  ~ O}[a'](~,) = 0}[a '](~).  

Note by the definition ofaA~ that  for any such M~-generic G' C ~s the definition 

of ~)~[G'] will continue to describe a reduction of Bx to id(2 <~~ through all future 

generic extensions of M~[G']. 

For any y C B~ we now let 0~(y) be the set of pairs of countable ordinals 

(aO,al) such that  for q the aoth object in kl~ in the canonical well order we 
have 

qCWs 
and that there exists some M~-generic G C B~ and g C H so that 

g y = z(C) and M~[G] ~ q IF -y) = ~ .  

It follows from the structure of the definition that  0~(y) is an invariant of [Y]H. 

CLAIM (3): Suppose Xo,Xl E A with B~s ~ = z, W t ~ s ,  ~s  ~ = s ,  ~(~0) = 7 ( ~ )  and 
OXs~ = O~s ~ (as terms in the forcing notion Bzs ~ = B~S ' ). I f  Yo e Bxo and Yl e Bx,  
are EX-inequivalent ,  then 

0f~ ~ 0~'(y~). 

Proof  of  Claim: Choose go, gl E H, Go, G1 C B~ ~ (= B~' ) witnessing 

go 1 .  x(Go) = Yo E B~ o and g~-i . x(G1) = yl E B~I, respectively. Choose 

G' C ]Ws~ = ]Ws~ to be both M~ ~ [Go] and M~' [G1] generic. 

S,BCLAIM: (0~~ Y0) = (0~'[C'])(90' Y0) # (0~[G'])(91" Yl)- 

Proof  of  Subclaim: By the product lemma of w [18] we have that  go ' Y0 and 

gl "Yl are generic over M~ ~ [G'] and M~ 1 [G']. Thus by the definition of aA~ 

we have that  (0~~ �9 Yo) and (0~1 [G'])(g~. Yl) = (0~~ Yl) are well 

defined. Now the Subclaim follows by the absoluteness of H~ between M~ 1 [G'] 

and V. (Subclaim | )  

Thus without loss of generality there will be some al  < wl so that  

O~1 e ({)~' [G'D(Bo. Y0) \(~)~' [G'])(gl.  Yl). 
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Then for q C G' so that 

M~~ ~ q It- ~1 �9 0~~ " Y0), 

and a0 so that  q is the a0th object in M~ ~ 

(0~0,0~1) �9 Oxs~ O~~ (Claim (3) | )  

Isr. J. Math. 

The only problem with this is that the reduction 0~ only provides a reduction 

to id(2 <~~ on each slice of the form B~; potentially we may have Y0 C Bxo and 

Yl e Bxl with [X0]H 7 ~ [Xl]H and 

(y0) = (Vl). 

So using some injection (.,.,., ...}: Wl 7 "-+ wa we can let 0(x) for x E A be the set 

of 

(so,  50, 

such that  

(i) a0, a l  < ~1, O~2, Of 3 < ")'(X); 

(ii) the a2th object in the canonical well order of (V.dx)) M~ is an element of 

the c~3th object in the canonical well order of (Vv(~))M~; 

(iii) the 50th object in (V.~(~))M~ is B~; 

(iv) the 51th object in (V.y(~))M~ is the term 0~; 

(V) (C~0,Otl) �9 0~(X). 

It should be clear from the structure of the definitions that 0(x) is an invaxiant 

of the orbit [X]H. By (i)-(iv) we have that if 0(x0) = 0(xl) then 

~ o  __ ~ ,  , ,),(X0) -- ,),(Xl) ' ~)~o __0S'x,., 

but then it follows by Claim (3) that  xoExxl. | 

There is a fact implicit in this proof that should be explicitly mentioned: For 

any Polish group H and Polish H-space X there is in L(R) an H-invariant 

p: X --+ 2 <~1 

such that  for any Z C 2 <~' both the set 

{x e X: p(x) = Z} 

and the relation 

EH[{xeX:p(x)=Z} x {xeX:p(x)=Z} 

are uniformly Borel in any real coding Z. 
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3.3 COROLLARY: Assume AD L(R) . Let G be a Polish group and X a Polish 

G-space, and let A C X be in L(]~). Then either: 

(I) x id(2<~t), EG [A ~ L(R) 
or 

(II) Eo E c x Ec IA. 

Proo~ By 2.2 we have all sets of reals oc-Boret in L(•). As at 2.7, the 

determinacy assumption implies there is no wl-sequence of reals, and we have 

the assumptions of 3.2. | 

In unpublished work Woodin has previously obtained from ADa that all sets 

are the projection of some tree on some ordinal, and hence c~-Borel; thus un- 

der ZF+DC+AD~ either x Ea[A <id(2 <~)  or E [-c x _ _ EG IA, thereby answering 

question 8.1.2 from [3]. 

The method of proof at 3.2 can also be adapted to show that if E g  --<L(a) 

id(H(t~)) for some ordinal ~; then the orbit equivalence relation may be reduced 

to id(HC).  The main point is that  we may assume that any such reduction 

0: E x _< H(a)  

is T-Souslin for T a tree for E2 and then we may assign to any x E X some t-~l' 

suitably chosen piece of HODL,~:;i:~ '0(x)], where g E H generic and z is a para- 

meter coding the action. More recently, rather different techniques in [16] have 

shown the stronger result that when E g is L(R) reducible to isomorphism on 

w e l l o r d e r a b l e  models, then it is reducible to isomorphism on countable struc- 

tures. 

4. Infinitary logic and group actions 

This section summarizes the main points in the development of infinitary logic for 

descriptive set theory and ~-Bore l  codes. These remarks are along the lines of 

[8] and [10], but with particular emphasis on the context of Polish group actions. 

The unattr ibuted results here are technical and largely folklore. They will form 

the background for w 

4.1 LEMMA: Let X be a Polish space, 13 a basis for the topology, and C c X a 

closed subset, then 13c = { 0  n C : 0 E 13} o13 is a basis of a new topology on X .  

Proof: Since X with the new topology is homeomorphic to the disjoint union 

of C and X \ C, both of which are shown in [20] to be Polish in the relative 

topology. | 
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4.2 Definition: Let X be a Polish .~pac~' and/3 a ba.~is. Let s be tile proposi- 

tional language formed from atomic propositions of tile form '~ E U', for U E /3. 

Let /:~,0(B) be the infinitary version, obtained by closing under negation and 

countable disjunction and conjunction, and let s be the obtained by clos- 

ing under arbitrary Boolean operations. F C s is a f r a g m e n t  if it is 

closed under subformulas and tile finitary Boolean operations of negation and 

finite disjunction and finite conjunction. For ~ Es F(~2), the f r a g m e n t  

g e n e r a t e d  by  ~o is the smallest fragment containing ~2. 

For a point x E X and ~ Es we can then define x ~ ~ by induction in 

the usual fashion: If ~ = '~ E U" then x ~ T if and only if x E U; for ~, = ~/,, 

x ~ ~ if and only if it is not the case that. x ~ ~/~; for ~ = A{g', : i E A}, x ~ 

if and only if for every i E A we have x ~ ~1~,. 

For F C s a countable set closed let T(F) be the topology generated by 

/3 and all sets of the form {x E X : x ~ p}, as T ranges over F. 

4.3 LEMMA: For F C ~,0(13) a co~mtable fragment, T(F) forms the basis of  a 

Polish topology on X .  

Proof: This follows by 4.1 and induction on the complexity of the infinitary 

sentences in F. If ~p = -~r it follows by inductive assumption and 4.1. For 

zEA 

it is trivial, since we are simply adding a new open set to the basis. At limit 

stages of the construction we may use that  increasing countable unions of Polish 

topologies are again Polish--a classical fact that is recalled in [26] and [20]. II 

Note then that  if F is a fragment of s then in any generic extension in 

which F becomes countable it must generate a Polish topology. We will frequently 

have cause to consider Polish spaces and continuous Polish groups both in the 

universe V and through future generic extensions. This is reasonable, since all 

the relevant statements of the form 'X is a Polish G-space' are HI, and hence 

absolute. 

The next lemma merely makes the point that we may find the Vaught transform 

of a ~ E E.ooo(B) in a manner that  is effective. The proof is by transfinite 

induction and can be viewed as a rephrasing of the usual proof that  the Vaught 

transform of a Borel set is again Borel. 

4.4 LEMMA: Let G be a Polish group, X a Polish G-space,/3 a countable basis 

for X ,  13o a countable basis for G. Then to each ~o E s and V E 13o we 

may assign a formula ~o Av E s such that: 
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(i) (V, ~) ~+ qo AV is uniformly ~1 in any parameter coding X,  G, the action, 

and the bases; 

(ii) the fragment generated by ~av  has the same cardinality as the fragment 

generated by ~, and in fact they have approximately the same logical com- 

plexity; 

(iii) in all generic extensions V[H] of V in which ~ �9 (s villi we have 

Note here that the calculation of whether x ~ ~ is absolute to any model 

containing x and p. The statement of 4.4 gives that the assignment (V, ~) ~ ~ v  

will be A1 when restricted to ~ � 9  since AHC = A1. 

The next two lemmas again admit routine proofs by transfinite induction. 

4.5 LEMMA: Let G, X,  B, 13o be as in 4.4. Then to each ~ �9 s and g E G 

we may assign a formula ~g �9 s such that: 

(i) (g, ~o) ~-~ ~g is uniformly A1 in any parameter coding X,  G, the action, and 

the bases; 

(ii) the fragment generated by ~9 has the same cardinality as the fragment 

generated by ~; 

(iii) in all generic extensions V[H] of V in which 7~ �9 (s v[H] we have 

{x �9 x :  x ~ ~g} = {x E x :  g.  x ~ ~}. 

The next lemma can be contrasted with the notion of o~-Borel from w In effect 

the lemma states that  every oo-Borel code is representable by some infinitary 

qo �9 s for some ordinal n. 

4.6 LEMMA: Let X be a Polish space and B be a basis. Then for a an ordinal, 

S C a, and ~b E s 1 4 9  a formula in set theory, there is a corresponding~(a, S, r �9 

s such that 

(i) in all generic extensions, 

{x �9 x :  x ~ ~ ( ~ , s , , ) }  -- {x �9 x :  L~[S,~] ~ r S)}; 

(ii) the transitive closure of ~(a, S, r has cardinality lal + ~o, so that for 

(7 c Coll(w, a) V-generic, ~o(a, S, r E s 

(iii) the assignment a, S, r ~ qo(a, S, r is A 1 in any parameter coding the 

space and the basis. 
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4.7 THEOREM (Becker-Kechris): Let G be a Polish group and X a Polish G- 

space, 13 a basis for X ,  13o a basis for G, Go c G be a countable dense subgroup. 

Let C be a countable collection of  Borel sets in X such that 

(i) C is an algebra--in other words, closed under finite Boolean operations; 

(ii) C is closed under translation by elements in Go; 

(iii) d is dosed under Vaught transforms from 130, so that for C E C and V E 13o, 

c * V , c  z w  E C; 

(iv) C forms the basis of a Polish topology on X .  

Then: (cZ~V: C c C, V E Bo} forms the basis of  a Polish topology on X under 

which it remains a Polish G-space. (See [3].) 

The assumptions above guarantee that  for any C1, . . . ,  Cl E C, V1,. . . ,  Vz E 130, 

C~ y~ N . . .  n C~  y' is the union of sets in ( C  a v  : C E C, V E B0}: If 

X E C1 ayl N . . - N C n 

then we may find a basic open neighbourhood W of the identity and g l , . . . ,  gn 

in Go such that 
z E C~ wg~ N . . .  n C *wg"  

and each 

Wgi c V~. 

.'. X E (g l lC1)  *W N . . . N  (gnlCn)  *W C ( g l l C l  N - . .  n g ' n l c n )  AW 

c n . .  n 

4.8 LEMMA: Let X ,  B be as in 4.7, let E be a ~1 equivalence relation on X ,  

and let F be a forcing notion, p E P, and a a term for V ~' a term for an element 

in X ,  such that 

(p,p) o[Cz]Eo[Cr], 
where, as usual, Gl and Gr refer to the generic objects on the left and right copies 

of P. 

Then there is a set F CLio(B)  and a ~ E F such that: 

(i) T(F) generates a Polish topology on X in any generic extension in which 

F becomes countable; 

(ii) for any generic H C P, a[H] ~ ~; 

(iii) for any x l , x2  appearing in any generic extension of  V with x l , x2  ~ ~ we 

have x l  Ex2. 
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Proof." 

CLAIM: There exists ~ so that 

x ~  

i f  and only if  there exists (in some generic extension of V)  a V-generic H C IP 

with 

p E H and a[H] = x. 

Proof of Claim: This is by considering the factor forcing. Following w of [18] 

we may find a forcing notion Qo and a Q0-term (7o so that for any H C ~ that is 

V-generic there exists V-generic H0 C Q0 with 

a0[H0] = a[g] and V[ao[Ho]] -- V[H0] 

and some Q1 E V[H0] and H1 c Q1 a V[H0]-generic filter with 

V[HoI[H1] = V[H]. 

Now choose a to be a sufficiently large beth fixed point, S C a a code for 

(V~,P,a) (so that  L~[S] = Va), and let r .) be a formula so that 

L [x,S] r 

if and only if it satisfies there is some forcing notion (}1 whose generic object will 

make possible the construction of an L~[S]-generic H c P with 

a [ H ] = x  and p E H .  

Thus we may apply 4.6. (Claim | )  

By closing ~ under subformulas and finite Boolean operations, we obtain a 

Polish topology by 4.3. Thus we have (i) and (ii). 

So now suppose that xl ,  x2 ~ T. Then we can generically find H1, //2 that 

are V-generic below p with a[H1] = x t ,  a[H2] = x2. Then by choosing/-/3 C 

sufficiently generic below p, and setting Xs = a[H3], we get that H1 • H3 and 

H1 • H2 are both V-generic. 

Then by the assumptions on P, p, and a, 

x lEx3 ,  x2Ex3, 

and thus 

XlEX2. | 

In the context of Polish group actions 4.7 suggest a refinement. 
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4.9 COROLLARY: Let G, X ,  B, Go be as in 4.7, and let ]? p 6 IP, and cr be as in 

4.8. Then there is a set Fo Cs and a ~o E Fo such that: 

(i) T(F0) generates a Polish topology on X in any generic extension V[H] in 

which Fo becomes countable, and (X, T(Fo) ) remains a Polish G-space; 

(ii) for any generic H C ]? 

vg e C(g. o[H] # 

(iii) for any x l ,x2  in any generic extension of V with x l ,x2  ~ ~o we have 

xlE~x2. 

Proof: First let F* be the forcing notion of IP followed by the version of Cohen 

forcing obtained by using the basic open sets in G to create a generic group 

element. Then let T be the term in ]?* for g '  a[/:/], where t) names the generic 

group element and/ : /denotes  the generic on P, and let q = (p, 1} be the condition 

in IP* obtained by insisting that p be in the generic/:/. 

Then 11 >* , q E F*, and ~- continue to satisfy the assumptions of 4.8, but we have 

engineered the further result that if (H, h) is a generic on P*, and x = T[(H, h)], 

then in any future generic extension in which (2 ~'*)y becomes countable we have 

that V*g C G((H, gh) is Y generic for F* below (p, 1)). 

Now we choose F and ~ as in 4.8, for F* and T, but taking enough care to 

ensure closure under Go translation and A-Vaught transforms with respect to 

B0. This can certainly be achieved by 4.4 and 4.5. So then we obtain (i), (ii) and 

(iii) as in 4.8, but with the further condition that in any generic extension of V 

containing x in which (2P') y becomes countable 

and so in the notation of 4.4, 

x ~ x ~  ~'C. 

CLAIM: In all generic extensions, qo z~G is G-invariant. 

Note that  for any generic extension in which ~ is in s we will have that  

x ~ 9~ Ac if and only if there is a non-meager collection of group elements g E G 

such that  g .  x ~ ~. Thus 

x b ~c 
if and only if 

go" x ~ ~ac 
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for any go C G, in this model, and hence also in V[x, g0]--since the calculation 

of 

go" x ~ ~p,c 

is absolute to V[x, go]. (Claim l) 

So if we now follow 4.7 and let F0 be {~bAV: r C F, U C B0}, then we can take 

~Oo = ~AG E FO. Then this is as required since ~zxa is G-invariant. | 

5. B e c ke r ' s  t h e o r e m  

5.1 LEMMA: Let G be a Polish group admitting a left complete invariant metric, 

and X a Polish G-space, and B a countable basis for X .  Let x E X .  Let M be a 

class inner model of ZF + DC, with X ,  G, and the action existing in A4, in the 

sense of being coded by a parameter in A4. Let F C s  be a countable set 

such that 

(i) F E 1,4; 

(ii) in some generic extension of V, ~-(F) generates a Polish topology on X ,  

including the original topology, with (X, T(F) ) a Polish G-space; 

(iii) [x]a is T(F)-open. 

Then: [xla N Ad r O. 

Proo~ [The idea of the proof is that much of the crucial information regarding 

the orbit [x]c can already be determined in Ad; if H CColl(w, F)  is M-generic, 

then .M[H] N[x]G ~ ~ and, for instance, {g) e F: 3x0 E [x]c(x0 ~ ~)} C Ad; 

the task is to use this information to find a representative of the orbit. Normally 

this would be quite out of the question, since for arbitrary Polish groups we may 

have orbits that  are 'generic' in the sense of 4.8 over an inner model without 

there having a representative. Here the complete left invariant metric enables us 

to obtain a representative solely from the relatively weak information regarding 

how the map g ~ g.  x is T(F)-open. As preshadowed by some arguments in [1], 

this is a little like back-and-forth constructions in model theory but only here 

the restrictive assumption on the group implies that the 'forth' direction alone is 

sufficient to entail isomorphism.] 

Note that  the natural map from 

G--~ [x]G , 

g ~ g . x ,  



250 G. tt30RTIt Isr. J. Math. 

is T(F)-open and v(F)-continuous by 1.9 and (ii) above in the assumptions of 

the lemma. 

Let/3o be a countable basis for G in At. Let d~ be a right invariant complete 

metric on G. Let d be a complete metric on X. Then for any V �9 B0 with 

lc; �9 V we define 

B( V )= {~  �9 F: Vx0,x, �9 [x]GV~'�9 F((xo ~ ~)A(xl ~ VA~')::vx0 V ( ,)AV)}. 

CLAIM (1): For any neighbourhood V �9 13o of 1 G and xo �9 [x]G there, is some 

�9 B(V) with xo ~ ~. 

Proof of Claim: Since [x]c is open with respect to T(F) it is certainly in 

H~ Now the claim follows by 1.10. (Claim (1) | )  

CLAIM (2): The function 

is an element of A4. 

v ~ B ( v )  

Proof of Claim: Note that this function is an invariant of [x]c. By assumption 

on x we may find ~0 �9 F so that in all generic extensions A4[H] of ,A,4 in which 

F becomes countable 

M[H]N[x]c # O V x o E M [ H ] ( x E c x o ~ x o ~ o ) .  

Note then an)" such A4[H] will have the function 

v ~ t3(v)  

by the absoluteness of Hi. 

Thus B(V) will be uniformly definable over A,4 as the set of ~o E F such that 
for all forcing notions P C .h4 

M P ~v~o' c FVzo,zl c X((zo ~ ~Oo A~o) A (z, ~ ~o0 A ~o A ~o') ~ xo ~ (~o')Av). 

(Claim (2) II) 

Thus using DC in .A4 we may find sequences 

(Vn)n~N C BO, (Un)neN C I3, ~,~ E B(Vn) and (z~),~eN C X 
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such that  if H cColl(w, F)  is ~4-generic then ~4[H] satisfies 

d~(V~) < 2 -~ ,  d(U~) < 2 -~,  

3x~ c [x]c n V~+l(X~ ~ ~ ) ,  z~ e u~, 

y ~ X (y  ~ ~+1 ~ y ~ U~+l A y ~ p~), u~+l �9 u~. 

The above assignments exist already in M since it has access to the function 

V ~ B (V) .  Since (z~)~eN is Cauchy in M ,  we can find zoo C M such that  

Z n --} Zoo aS n --~ (Do. 

Meanwhile in AJ[H] use the definition of 13(V~) to find (x~)~eN such that  

xn E [x]a A U,~ and xn ~ ~ and such that  at each n there is 

gn " Xn = X n + l .  

Note that  dr(g~, l a )  < 2 -n  implies d~(gn " gn-1 " . . .  �9 go ,g~- i  �9 . . . "  go) < 2- 'L  

Thus if we set h~ = gn �9 g~- i  �9 .-- 'go then (hn)~eN is a Cauchy sequence in G 

with respect to dr. So there is some hoo that  is the limit of (h,~)ncN. Then let 

Xoo = hoo �9 x0 = limNxn. 

Since d(xn,  z~) < 2 -n  we get 

zoo = Zoo ~ M n [x]a,  

as required. | 

5.2 COROLLARY: Let  A4 be a class inner model  of Z F + D C .  Let  X be a Polish 

G-space, wi th  both objects  along with the action exist ing in M .  Le t  (~, a, p) ~ A/1 

such that  a is term for the ~4 P such that  

(p,p) tkp• ~[O~]E~o[Or]. 

Then  there is some y E A4 such that  

p IF~ ~  

Proo~ We may as well assume that  our universe V has a representative of the 

generic equivalence class, since otherwise we may replace V by V[H] for some 

suitably generic H.  Then the theorem follows by 5.1 and 4.9. | 

I t  is concluded from the results of [6] that  5.2 characterizes when a closed 

subgroup of Soo is cli, in that  if G is a closed subgroup of the symmetric group 
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that does not admit a left invariant complete metric then there is a Polish G-space 

X and ~r a term for the forcing notion F =Coll(w, cot) such that 

and for all x �9 X 

5.3 THEOREM: TVC(cli, E~)--which is to say, if G is a cli Polish group, X a 

Polish G-space, A C X E~, then either ]A/G[ <_ R0 or there is a perfect set 

P C A such that any two elements in P are E x-inequivMent. 

Proof: Suppose for a contradiction that A is E~ and has uncountably many 

orbits but not perfectly many. 

CLAIM (1): In all generic extensions A has uncountably many orbits. 

Proof of Claim (as in [26]): Let Dr(G) denote the standard Borel space of all 

closed subsets of G with the Effros Borel structure. The statement that A has 

uncountably many orbits may be recast as 

iEoJ 

where G~, denotes the stabilizer of xi. Since the set 

{(x ,F)  �9 X • ~ : ( a ) :  F = Cx} 

is ~ I  and any [x]a is uniformly )11 in any code for G~ the whole display above 

is II 1 and hence absolute by Shoenfield. (Claim (1) II) r,.,2 ~ 

Thus for IP =Coll(w, (2~~ there will some term a with 

~' l~ Vz �9 V ( z  q~ [~[d;]]a). 

CLAIM (2): /n no generic extension does A have a perfect set of inequivalent 

orbits. 

Proof of Claim (again as in [26]): Suppose in some generic extension we have 

perfect P C A so that for all x, y �9 P 

x E a y  ~ x = y. 

Suppose A -- {x �9 X : 3y �9 w"((x ,y)  �9 B)} for some Borel B C X x w ~. 

Following 18.A of [20] we may use Jankov yon Neumann uniformization to find a 
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C-measurable function f:  P ~ w ~ so that for all x E P the point f (x )  witnesses 

x E A. Since any C-measurable function must be Baire measurable and hence 

continuous on a relatively comeager Q c P and any such comeager set must 

in turn have a perfect subset, we may find perfect P0 C P and continuous f0 

with domain P0 such that for any x E Po, fo(x) witnesses x E A. But then the 

statement that  there exists perfect P0 C X and continuous f0 :P0  --+ w ~ such 

that 

Yx E Po((x, fo(x)) E B) 

Vx, y E Po(xEay ~ x = y) 

will he E 1 and hence absolute. (Claim (2) | )  ,-~2, 

CLAIM (3): There exists some condition p E ~ that decides the equivalence class, 
in the sense that 

Proof of Claim (as in [9], [10], or [28]): Or else in the generic extension 

V c~ choose (Dn),,er~ an enumeration of the open dense subsets of ? x P, 

and then choose (P~)~e2<~ so that for s r t E 2 n, 

(Ps, Pt) E D=, 

and 

(ps0, psi) I~-~• -,(a[dt]EXa[r 

then for w E 2 N we let G~ be the filter generated by {Pwln : n E N} and obtain for 

any two distinct w, w' E 2 N that a[G~] and a[G~,] are inequivalent; by meeting 

all the dense sets in V we will obtain that the function 

2 ~ - ~ A  

is continuous and hence we finish with a perfect set of orbit inequivalent points 

in A. This contradicts Claim (2). (Claim (3) | )  

So suppose instead that there is a condition p deciding the equivalence class. 

For H C lP V-generic, x = a[H], in V[H] we can apply 5.2 to M = V, and obtain 

that [x]a has a representative in V, contradicting the assumption on F and a. 
| 

Perhaps the main difference between the proof of 5.3 and the arguments of 

[1] is in the use of the 'virtual' Polish topologies described in w This has 
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proved a useful technical tool, since recently it has been possible to algebraically 

describe those Polish groups for which the Vaught conjecture holds on analytic 

sets: TVC(G, El)  if and only if no closed subgroup of G has Soo as a continuous 

homomorphic image. 

5.4 THEOREM: Let G be a Polish group with a left invariant complete metric 

acting continuously on a Polish space X, and let A C X be Ei.  Then either 

(I) there is an absolutely A 1 function t): A --+ 2 ~ such that for all Xl, x2 �9 A 

3g �9 G ( g .  x l  = x~) ~ 0(Xl) = 0(x~), 

or  

(II) there is a Bore1 0: IR ~ A such that for ai1 rl ,r2 E IR 

7"1 -- T2 C Q g:~ 3g C G ( g .  0 ( r l )  = 0(T2) ). 

Proof  Let A = {x C X : 3y C w~ y)}, for some Polish space B C X x w ~~ 

Define E on B by (Xl, yl)E(x2,  Y2) if and only i f x lEgX2.  This is a E l equivalence 

relation such that  through all generic extensions every equivalence class is Borel. 

Following 1.11, one case is that  Eo E_c E, when we are quickly finished. Al- 

ternatively, we obtain a C-measurable in the codes reduction into 2 <~'1 , call it 0. 

Then it is H21 to assert that 

Vxl, x2 �9 X(O(Xm) = O(x2) ~ z l E ~ z 2 )  

and thus absolute. Let z be a real coding the action, and any parameters used 

in the definition of 0. 

Then for all (x, y) �9 B there must be a representative of the E-equivalence 

class of (x, y) in any generic extension of L[0(x, y), z] in which O(x, y) is countable, 

by absoluteness of E 1. Thus [x]G will be generic over L[O(x, y), z], and thus by 

5.2 there will be some xo �9 [x]G N n[O(x, y), z]. 

So now we can define 00: A -+ X by letting 00(x) be the first real under the 

canonical wellorder in L[O(x, y), z] with xEXxo.  This gives a reduction of E~  [A 

to id(X), which can in turn be reorganized to give a reduction into id(2 ~) or 

id(]R). 

It should be clear from the definitions that the function 00 is A21. Since every 

step in its definition appealed to facts that are absolute between the universe V 

and its generic extensions, the function is absolutely A12 . | 

Combining these ideas with the methods of w it can be shown that: 
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5.5 THEOREM (ADL(R)): Let G be a cli Polish group and let X be a Polish 

G-space. Let A C X be in L(R). Then either 
( t )  x Ec  IA <-- id(2~), 

OF 

(Ii) E0 IA. 

The observation that underlies the proof of 5.5 is that if we are in case (I) of 

3.3, as witnessed by 

0: A ~ 2 <~ 

in L(R), and if S C ~ is an c~-BoreI code for 

{(X, Wo,wl,i): x E X,  wo, wi code a < 6, O(x) C 2 ~, O(x)(o~) = i}, 

then O(x) E L[S,x]; in the notation of the proof of 3.2, [x]G will be generic over 

M~[O(x)]; thus 

[xIaNM~[O(x) ] r O 

by 5.1. 

Finally, no cli group can code countable sets of reals. Since this is one of the 

simplest equivalence relations induced by the symmetric group, and in some ways 

appears distinctive of this group, the result underscores the divergence between 

cli group actions and arbitrary orbit equivalence relations induced by So~. 

5.6 THEOREM: Let Y = R N and define E by (yn),~eNE(xn),er~ if and only if 

{Yn: n E N} = {x,~: n c N}--so this is the orbit equivalence relation induced by 

the S~-action of (9. s = x(g- l (n) )  for ~ E Y and 9 �9 S~ .  Then there is no 

cli Polish group G Polish G-space X with E <_a E x .  

Proof: Instead suppose O: Y ~ X performs a Borel reduction. Note that this 

statement is H~: 

Vyl,y2 e Y(ylEy2 r 39 C G(g. O(yl) = 0(y2)); 

and hence it would be absolute through all generic extensions. 

Let ]P be the forcing to collapse 2 ~~ to w, and let a[G] denote the term in V P, 

an element of Y, that enumerates every real once. Thus 

e • P ,~ o[GdEo[Gr].  

the term for 0(a[(~]), by the absoluteness of the Thus if we let cr0[G] be 

assumptions on 0 
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Thus by 5.2 there is some .r. E X with 

However 

v I = e 

and so this must hold already in V by the absoluteness of E 1. So fix y E Y with 

~(y)EXx. Then again by the absoluteness of the assumptions on 0, iP IF- a[G]Ey. 

This is absurd, since any such y would need to enumerate _~ in order type ~. 
| 

While a similar result is proved for abel|an groups in [13] without an appeal 

to metamathcmatics, the only known proof of 5.6 uses forcing. 

6. K n i g h t ' s  m o d e l  

6.1 Definition: Let a E s for s some countable language, which we may 

assume without loss of gcnerality to be relational. Then Mod(a) is tile set of all 

models of a whose underlying set is N. We let r(a) be tile topology generated 

by sets of the form {111 cMod(a):  M ~ ~b(n0,nl .... ,nk)} where (no . . . . .  nk) is a 

finite sequence of natural numbers and r is a formula in the fragment generated 

by a, in the sense that it is in the smallest collection of formulas containing a and 

closed under subformulas, substitutions, and the first order operations of nega- 

tion, finite disjunction, finite conjunction, and existential quantifiers. Mod(E) is 

the collcction of t: models on N with the topology generated by first order logic. 

We then let S~  act on Mod(a) by 

(g. M) ~ R(no . . . .  ,nk) r 111 ~ R(g-l(no) , . . . ,g- l (nk)) ,  

for any R E t:, ( no , . . . ,  nk) a finite sequence in N. The equivalence relation Es~ 
induced by this action on Mod(a) is frequently denoted by -~ ]Mod(a). 

6.2  LEMMA (see [7]): For any a C E~,~, (Mod(a),T(a)) is a Polish Soo-space. 

6.3 Definition: For M a model and ff E M <~ one defines the canonical c~ type 
~,M of if, ~ , M  E s by induction on a: ~0 is the infinitary formula expressing 

the quantifier free type of ff in M; 

d,M 6.,M 
= A v, V 

bEM bEM 
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At limit stages we take intersections. 

The S c o t t  he igh t  of M is the least 3' such that for all d, ~ , M  determines 
ff, M ~ + 1 '  The S c o t t  s e n t e n c e  of M, ~9 M E ~oow states what 0,-types exist for 0' the 

Scott height and that this is the Scott height. As in [22], two countable models 

are isomorphic if and only if they have the same Scott sentence. 

6.4 Definition: Let M be a countable model with underlying set N. Then 

Aut(M) = {g E Soo: 9" M = M}. 

6.5 THEOREM (folklore): Let G be a subgroup of Soo. Then G is closed in Soo 

if  and only if  G = Aut(M) for some countable M with underlying set N. 

The authors of [3] noticed that this allows a curious analogue in the context of 

Polish group actions. 

6.6 THEOREM (Becker-Kechris): Let G = Aut(M) be a closed subgroup of S~;  

let s be the language of M.  Let X be a Polish G-space. Then there is a language 

s D s extending the language of M and a E s such that a ~ ~o M and ]X/G I 

is Borel equivalent to Mod(a), in the sense that there are O: X -~ Mod(a) and 

p: Mod(a) --+ X such that: 

(i) 0 witnesses E ~  <B TM ]Mod(cr); 

(ii) p witnesses ~ [Mod(a) <B E x ;  and 

(iii) these are orbit inverses to one another in the sense that for all x E X ,  
xEX(p o O(x)). 

Proof (sketch): Let (Om),~eN be a countable basis for X. We may associate to 

each x E X the model M~, with relations (Rm,k)m,kem where for ( n l , . . . ,  nk) a 

k-tuple in N, 

M~ ~ R m , k ( n l , . . . , n k )  ~:~ V*g E G(g(nl) = 0A..-Ag(nk) = k - 1  ~ g.x  E Ore). 

It is shown in the course of [3] that for x l ,x2  E X ,  x l E x x 2  if and only if there 

is some g E G with g �9 M~I -- Mx2. 

At this point we may define Nx to be the expansion of Mx obtained by incor- 

porating all the relations of M. Since any g E G fixes M~, we then obtain that 

Nx 1 -~ N ~  if and only if 9g E G(g.  M~ 1 = M~2). We let s  be the language of 

these model Nx. Since {g. N~ : g E Soo} is a Borel S ~  set, we may characterize 

it as the model of some a ~ s  I 
~ i  ~" 
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6.7 THEOREM (Gao): Let G = Aut(M) be a closed subgroup of Soo, with s the 

language of M.  Then G is cli if and only if every s elementary embedding 

r: M --+ M is onto. 

6.8 THEOREM (Knight): There is a countable model M with language 

{ <, fo, f l , . . . } ,  where 
(i) < is a linear ordering on M; 

(ii) each fn is unary function; 

(iii) for each y C M, {x E M: x < y} -- {f~(y): n E a;}; and 

(iv) there is a non-onto s elementary embedding from M to M. 

6.9 LEMMA: Let G be a Polish group, X a Polish G-space, A C X a counter- 

example to TVC(G,E]) .  Then for each ordinal ~ there exists a sequence 

(P~,p~,a~)~e~ so that for each a < j3 < 

(P~,Pc,) IbI, o• a~[Gl]Eca~,[G~]; 

(p~,p~) Ibe~• -"(a~[dllEGa~[(~]). 

Proof: As in the proof of 5.3, for Po = Coll(~, ~), ~ sufficiently big, there will 

some term ao for Po and Po E Po with 

~'o iF vx �9 v(x r [o0[allG), 

(po, po) IFpo• oo[r 

By applying this argument again in V P~ we may find P1 and o" 1 such that 

~l []- VX �9 V(X r [o'0[G]]G) , 

?~ • Po iF o1[r r [oo[r 

Continuing this transfinitely we may find (aa,Pa,Pa)  for a < ~ as described 

in the conclusion of the lemma. II 

6.10 THEOREM: There is a Polish group G such that: 

(i) TVC(G, ~ l ) - - i n  the sense that i rA C X is ~ ,  and X is a Polish G-space, 

then either [A/G[ <_ No or there is a perfect set P c A of inequivalent reals; 

and 

(ii) G is not cli. 

Proof: Let G =Aut(M) for M as in 6.8. G is not cli by 6.8(iv) and 6.7. Suppose 

for a contradiction that TVC(G, ~])  fails, so let X be a Polish G-space, A C X 
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with exactly lql many orbits, and fix 0: X --+ Mod(~) for some countable ~ E/2~1~ 

implying the Scott sentence of M, /2  D {<, fo, f l , . . . } .  

Thus for d = [H(w2)[ + we may find a sequence (Ps,Pn,an)se~ as in 6.9. In 
particular, for any such a and Ha c Ps V-generic below Pn, the equivalence class 

of as  [Hn] does not depend on the choice of Hs. Thus the isomorphism type of 

O(an[Hn]) is independent of the choice of the generic, and thus so too the Scott 

sentence. Hence, as in w of [14], an induction on the set theoretical rank shows 

that the Scott sentence ~on of O(as[Hn]) exists in V. 

Let 7(a) be the Scott height of any model of ~on (where this model, as opposed 

to its Scott sentence, may only exist in a generic extension). Let An be the 

collection of canonical 7(a) types realized by any such model; note that  the 

cardinality of 7(a) is less than or equal to that of An x As, since for any 13 < 

7(a) there must exist distinct canonical 7(a) types whose t3th approximations 

are equal but whose/3 + l th  approximations diverge. Thus, with the possible 

exception of the case that it is finite, the cardinality of As must be at least that 

of the transitive closure of ~n. Hence by assumption of ~ we may find r whose 

transitive closure has cardinality strictly greater than lql and hence for which An 

has cardinality greater than or equal to R2. 

Fix this a. We can define a quasi-linear ordering on As by qo' __ ~" if and only 

if for any model N of ~(a) and g, b C N with ~oT(n)~'N = ~ot and ~07(s)b'N = ~ ,  for all 

a0 E g there is some b0 C b and some c E N with 

ao,N c , N  N ~ c < b0, ~o.~(s) = ~o~(n). 

Since each model of qo is an expansion of the Knight model, it follows by 6.8(iii) 

that for each ~ E A(a) there are at most countably many qo" <: ~J, and we have 
a contradiction. | 

A positive answer to the next question would help clarify 6.10. 

6.11 Question: If G = Aut(M), for M a countable model, and TVC(G, EI) 

fails, then must the Scott sentence of M have a model of size 2~~ 
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